

OptiMOS[™] Power Stage

TDA21490

1 Description

- High frequency, low profile dc-dc converters
- Voltage Regulators for CPUs, GPUs, and high current rails

The TDA21490 power stage contains a low quiescent-current synchronous buck gate-driver IC co-packaged with high-side and low-side MOSFETs. The package is optimized for PCB layout, heat transfer, driver/MOSFET control timing, and minimal switch node ringing when layout guidelines are followed. The gate driver and MOSFET combination enables higher efficiency at the lower output voltages required by cutting edge CPU, GPU and DDR memory designs.

The TDA21490 internal MOSFET current sense algorithm with temperature compensation achieves superior current sense accuracy versus best-in-class controller-based inductor DCR sense methods. Protection includes cycle-by-cycle over-current protection with programmable threshold, VCC/VDRV UVLO protection, bootstrap capacitor under-voltage protection, phase fault detection, IC temperature reporting and thermal shutdown. The TDA21490 also features auto-replenishment of the bootstrap capacitor to prevent over-discharging. The TDA21490 features a deep-sleep power saving mode, which greatly reduces the power consumption when the multiphase system enters PS3/PS4 mode.

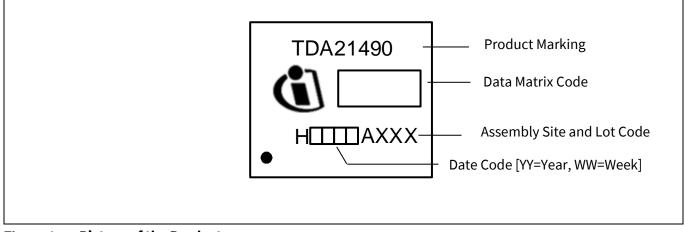
Operation at switching frequency as high as 1.5 MHz enables high performance transient response, allowing reduction of output inductance and output capacitance values while maintaining industry leading efficiency.

The TDA21490 is optimized for CPU core power delivery in server applications. The ability to meet the stringent requirements of the server market also makes the TDA21490 ideally suited for powering GPU and DDR memory designs.

2 Features

- Co-packaged driver, high-side and low-side MOSFETs
- 5-mV/A on-chip MOSFET current sensing with temperature compensated reporting
- Input voltage (VIN) range of 4.25 V to 16 V
- VCC and VDRV supply of 4.25 V to 5.5 V
- Output voltage range from 0.25 V up to 5.5 V
- Output peak current capability of 90 A
- Output DC current capability of 70 A
- Operation up to 1.5 MHz
- VCC/VDRV under-voltage lockout (UVLO)
- Bootstrap capacitor under-voltage protection
- 8-mV/°C temperature analog output
- Thermal shutdown and fault flag
- Cycle-by-cycle over-current protection with programmable threshold and fault flag
- MOSFET phase fault detection and flag
- Auto-replenishment of bootstrap capacitor
- Deep-sleep mode for power saving

OptiMOS[™] Powerstage TDA21490



Pinout

- Compatible with 3.3-V tri-state PWM input
- Body-Braking load transient support
- Small 5 mm x 6 mm x 1 mm PQFN package
- Lead free RoHS compliant package

Table 1Product Identification

Base Part Number	Temp Range	Package	Orderable Part Number
TDA21490	-40 °C to 125 °C	PQFN 5 mm x 6 mm	TDA21490AUMA1

Figure 1 Picture of the Product

3 Pinout

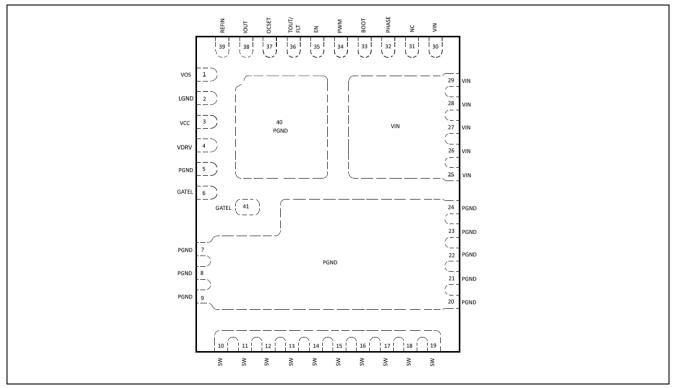


Figure 2 Pinout, Numbering and Name of Pins (transparent top view)

OptiMOS[™] Powerstage TDA21490

Block Diagram

4 Block Diagram

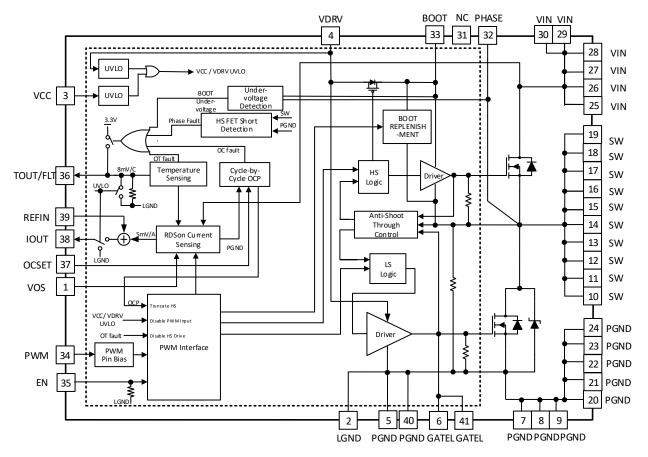


Figure 3 Block Diagram

OptiMOS™ Powerstage

TDA21490

Block Diagram

Table 2I/O Signals

Pin No.	Name	Pin Type	Buffer Type	Function
1	VOS	I	Analog	Connect to output of the converter. It serves as the VOUT voltage sense input for inductor current emulation during body braking. Kelvin connection in layout is not required.
6,41	GATEL	I/O	Analog	Low-side MOSFET driver pin that can be connected to a test point in order to observe the waveform.
10-19	SW	0	Analog	High Current switching node connection of the synchronous buck converter.
32	PHASE	I	Analog	Internal connection to the high-side MOSFET source. For Bootstrap capacitor connection only.
33	BOOT	I	Analog	Bootstrap capacitor connection. The bootstrap capacitor provides the charge to turn on the high-side MOSFET. Connect a minimum $0.22 \cdot \mu$ F, X7R ceramic capacitor from BOOT to PHASE pin. For applications with input voltage higher than 13.2 V, use a $2 \cdot \Omega$ bootstrap resistor in series with bootstrap capacitor to reduce SW node voltage spike and improve switching noise immunity.
34	PWM	I/O	Logic	3.3-V logic level PWM input. PWM input: "High" turns high- side MOSFET on; floating or driving PWM to the "Tri-state" turns both MOSFETs off; "Low" turns low-side MOSFET on.
35	EN	1	Logic	Pulling EN high enables the driver; pulling EN low disables the driver and enters ultra-low quiescent current mode. Floating this pin is not recommended, however a low current pull-down is embedded to keep the driver off if the pin is floating. The EN pin is VCC tolerant.
36	TOUT/FLT	0	Analog	The voltage at this pin is defined by the equation 8 mV * (Celsius Temperature) + 0.6 V. This pin will be pulled up to 3.3 V under severe over-temperature, over-current, bootstrap capacitor under-voltage, or phase fault condition.
37	OCSET	I/O	Analog	Program the over-current threshold by placing a resistor from OCSET pin to LGND. Floating OCSET or directly tying to VCC gives a fixed 120-A peak over-current threshold.
38	IOUT	0	Analog	Sensed current output signal referenced to the REFIN pin. V(IOUT – REFIN) voltage represents current information at 5 mV/A.
39	REFIN	Ι/Ο	Analog	The reference supply voltage for the IOUT information. This pin should be tied to a fixed voltage between 1.1 V and 2.0 V. The bias rails from typical PWM controllers are normally utilized with no additional decoupling needed at the power stage.

OptiMOS[™] Powerstage

TDA21490

Block Diagram

Table 3Power Supply

Pin No.	Name	Pin Type	Buffer Type	Function
4	VDRV	POWER	-	The gate driver supply. Connect a X7R, 1-μF ceramic capacitor between VDRV and PGND. VDRV should be connected to the +5 V power supply.
3	VCC	POWER	-	Bias voltage for control logic. Connect a X7R, 1- μ F ceramic capacitor between VCC and LGND, and a 1- Ω resistor between VCC and VDRV.
25-30	VIN	POWER	-	4.25-V to 16-V high current input voltage connection. Place a 0402, X7R, 0.1- μ F capacitor and a 0402 or 0603, X7R, 1- μ F capacitor close to VIN pin and PGND pin. Also connect at least one X7R, 10- μ F ceramic capacitor.

Table 4 Ground Pins

Pin No.	Name	Pin Type	Buffer Type	Function
2	LGND	GND	-	Signal ground. All signals are referenced to this pin.
5, 7-9, 20- 24, 40	PGND	GND	-	Power ground. It is also the power ground of the low-side MOSFET.

Table 5Not Connected

Pin No.	Name	Pin Type	Buffer Type	Function
31	NC	-	_	Leave this pin unconnected.

5 Electrical Specification

5.1 Absolute Maximum Ratings

Note: $T_A = 25 °C$

Stresses above those listed in Table 6 "Absolute Maximum Ratings" may cause permanent damage to the device. These are absolute stress ratings only and operation of the device is not implied or recommended at these or any other conditions in excess of those given in the operational sections of this specification. Exposure over values of the recommended ratings for extended periods may adversely affect the operation and reliability of the device.

Parameter	Symbol	v	Unit	Note / Test		
		Min.	Тур.	Max.		Condition
Frequency of PWM input	f _{sw}	0.2	-	1.5	MHz	
Maximum peak load current	I _{OUT_PEAK}	-	_	90	А	
Maximum average load current	I _{OUT}	-	-	70	А	
Input Voltage	V _{IN}	-0.30	-	25	V	Pin VIN
Logic supply voltage	V _{cc}	-0.30	-	6	V	Pin VCC
High and low-side driver voltage	V _{DRV}	-0.30	_	6	V	Pin VDRV
Switch node voltage	V _{sw}	Below -5 V for 5 ns, -0.3 V DC	-	34 V for 1 ns, 25 V DC	V	Pin SW
PHASE voltage	V _{PHASE}	Below -5 V for 5 ns, -0.3 V DC	-	34 V for 1 ns, 25 V DC	V	Pin PHASE
VIN – PHASE voltage	V _{vin} - V _{phase}	Below -5 V for 5 ns, -0.3 V DC		34 V for 1 ns, 25 V DC	V	VIN – PHASE
BOOT voltage	V _{BOOT}	Below -0.3 V for 5 ns, -0.3 V DC	-	29	V	Pin BOOT
	V _{BOOT-} phase	-0.3	-	7 V for 5 ns, 6 V DC	V	BOOT – PHASE
EN voltage	V _{EN}	-0.3	-	VCC + 0.3	V	Pin EN
PWM voltage	V _{PWM}	-0.3	-	VCC + 0.3	V	Pin PWM
TOUT	VTOUT	-0.3	_	VCC + 0.3	V	Pin TOUT/FL
IOUT	VIOUT	-0.3	_	VCC + 0.3	V	Pin IOUT
VOS	Vos	-0.3	_	VCC + 0.3	V	Pin VOS
OCSET	V _{OCSET}	-0.3	_	VCC + 0.3	V	Pin OCSET
REFIN		-0.3	_	3.5	V	Pin REFIN
Junction temperature	T_{Jmax}	-40	-	150	°C	-
Storage temperature	T _{stg}	-65	_	150	°C	_

Table 6 Absolute Maximum Ratings

• All rated voltages are relative to voltages on the LGND and PGND pins unless otherwise specified.

Electrical Specification

5.2 Thermal Characteristics

Table 7 Thermal Characteristics

Parameter	Symbol Values		Values		Values		Unit	Note / Test
		Min.	Тур.	Max.		Condition		
Thermal Resistance-Junction to PCB	$\theta_{\text{JC}_{PCB}}$	-	1.5	-	K/W	Referenced to Pin 24		
Thermal Resistance-Junction to top of package	$\theta_{JC_{Top}}$	-	16.7	-		-		
Thermal Resistance to Ambient	$\theta_{JA}^{\ Note}$	-	20.5	-		-		

Note: Thermal Resistance (θ_{JA}) is measured with the component mounted on a highly effective thermal conductivity test board in free air.

5.3 Recommended Operating Conditions

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Input Voltage	V _{IN}	4.25	-	16	V		
MOSFET Driver Voltage	V _{drv}	4.25	-	5.5			
Logic Supply Voltage	V _{cc}	4.25	-	5.5			
PWM Switching Frequency	f _{sw}	200	-	1500	kHz		
Reference Voltage	V _{refin}	1.1	_	2.0	V	Additional fixed current sense amplifier offset of –0.35 A at VREFIN = 1.8 V	
Junction Temperature	T _{JUNCTION}	-40	-	+125	°C		

Table 8 Recommended Operating Conditions

5.4 Electrical Characteristics

Note: $V_{DRV} = V_{CC} = 5 \text{ V}, \text{ T}_{J} = 65 \text{ °C}, \text{ V}_{REFIN} = 1.2 \text{ V}, \text{ f}_{SW} = 600 \text{ kHz}, \text{ V}_{OUT} = 1.8 \text{ V}$

Table 9 Voltage Supply, Biasing Current

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
UVLO VCC/VDRV Rising	VUVLO_VCC_RISE	-	3.85	4.0	V	
UVLO VCC/VDRV Falling	$V_{UVLO_VCC_FALL}$	3.3	3.45	-		
Hysteresis	V _{HYST}		0.4			
Driver Current	IVDRV	_	20	-	mA	$EN = 3.3 V$, $f_{SW} = 600 kHz$, $D=15\%$
		_	15	-	μA	EN = 3.3 V , PWM floating
		_	0.2	-	μA	EN = 0 V
Supply Current	I _{vcc}	-	3.2	-	mA	EN = 3.3 V
		-	45	-	μA	EN = 0 V
VIN Bias Current	I _{VIN}	-	35	-	μΑ	VIN = 15 V, EN = 3.3 V, V(PWM) = 1.7 V
		-	0.1	-	μA	EN = 0 V

OptiMOS[™] Powerstage TDA21490 Electrical Specification

Table 10 Current Sense and Temperature Sense

Parameter		Symbol		Values			Note / Test Condition
			Min.	Тур.	Max.		
IOUT	Current Sense Gain	A _{cs}	4.8	5	5.2	mV/A	
	Offset at Trim	A _{cs_ost}	-0.8	-	0.8	Α	0-A load

Table 11 Temperature Sense and Fault Communication

Parameter		Symbol		Values		Unit	Note / Test Condition	
			Min.	Тур.	Max.			
TOUT	Temperature Sense Slope	A _{TOUT_GAIN}	7.8	8.0	8.2	mV/°C	0 °C ≤ TJ ≤ 125 °C, Note 1	
	Temperature Sense Offset Voltage	V _{TOUT_OFFSET}	1.108	1.120	1.132	V	T」= 65 °C, 0.6 V + 8 mV/°C * T」	

Table 12 Other Logic Functions, Inputs/Outputs And Thresholds

Paramet	ter	Symbol		Values		Unit	Note / Test Condition	
			Min.	Тур.	Max.			
EN	Enable Power-on Delay	t _{en_delay_on}	-	5	-	μs	PWM = 0. Measured from EN rising edge to GATEL > 1 V.	
	Enable Power-off Delay	t _{en_delay_off}	-	50	-	ns	PWM = 0. Measured from EN falling edge to GATEL < 4 V.	
	Internal Pull-down Resistance	R _{en_pulldn}	-	450	-	kΩ	EN floating	
	Input High Voltage	$V_{\text{EN}_{\text{HIGH}}}$	2	-	-	v		
	Input High voltage	V_{EN_LOW}	-	-	0.8	v		
PWM	PWM Input High Threshold	V _{IH}	2.4	-	-	V	PWM Low or Tri-state to High	
	PWM Input Low Threshold	V _{IL}	-	-	0.8	V	PWM High or Tri-state to Low	
_	PWM Hysteresis	I _{PWM_HYS}	-	160	-	mV	Active to Tri-state or Tri-state to Active	

OptiMOS[™] Powerstage

TDA21490

Electrical Specification

Table 13 Protection

Parameter		Symbol	Values	Values			Note / Test
			Min.	Тур.	Max.	1	Condition
OTP	Over-Temperature Rising Threshold	T _{OTP_RISE}	-	140	-	°C	TOUT/FLT pulled high, Note 1
	Over-Temperature Falling Threshold	T _{OTP_FALL}	-	120	-	°C	TOUT/FLT released, Note 1
PHASE FAULT	High-side MOSFET Short Threshold	$V_{\text{PHSFLT}_{TH}}$	_	850	-	mV	V(SW) – V(PGND)
	TOUT/FLT Delay	N _{FLT_DELAY}	-	7	-	Cycle	PWM High-Low Cycles to TOUT/FLT high
OCP	Programmable Peak Over- Current Threshold Range	I _{OCP}	20	-	-	A	Program through R _{ocset}
	Constant Peak Over-Current Threshold	I _{ОСР_РЕАК}	-	120	-	A	OCSET open or connected to VCC
	TOUT/FLT Delay	t _{flt_dely}	10	-	-	Cycle	PWM High-Low Cycles to TOUT/FLT high

Notes

1. Guaranteed by design but not tested in production.

60

90

TDA21490 Typical Operating Characteristics

6 Typical Operating Characteristics

Single Phase Circuit of Figure 18, $V_{IN} = 12 V$, $V_{OUT} = 1.8V$, $f_{SW} = 600 \text{ kHz}$, L = 150 nH, VCC = VDRV = 5 V, $T_{AMBIENT} = 25^{\circ}C$, no heat sink, no air flow, 8-layer PCB board of 3.7"(L) x 2.6"(W), no PWM controller loss, no inductor loss, unless specified otherwise.

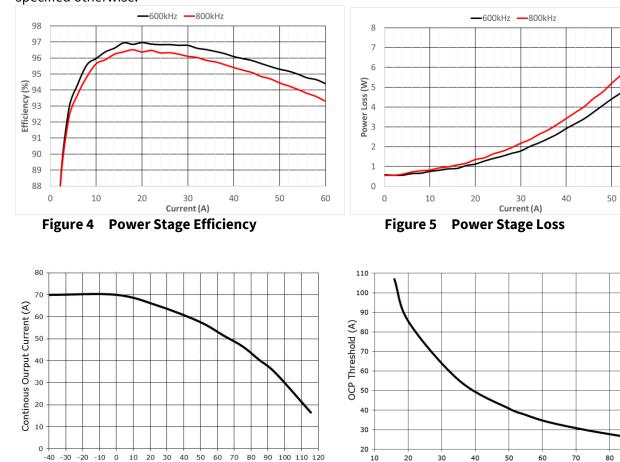


Figure 6 Thermal Derating, Tcase <= 125 °C

Ambient Temperature (°C)

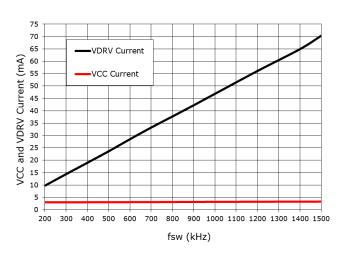


Figure 8 Vcc and Vdrv Current

Figure 7 Programmable OCP Threshold

OCSET Resistor (kΩ)

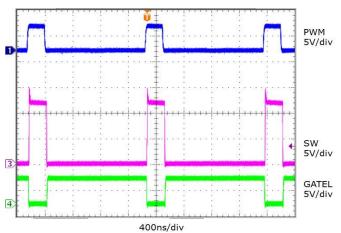


Figure 9 Switching Waveform at 0A

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTAifx1 PowIRaudio™, Pow<yyyy-mm-dd>

Edition <yyyy-mm-dd> Published by

Infineon Technologies AG

81726 München, Germany

© 2020 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.